Worldwide there is increasing demand from building and infrastructure owners for service provision throughout the entire life cycle of a building or infrastructure. This represents a distinct break with the design/build tradition which has dominated construction for years. At the Year in Infrastructure conference in London, a dominant theme was the growing recognition of the importance of full lifecycle management of infrastructure. I found it symptomatic of the direction of the construction industry that fully one third of the 54 finalists for the annual Be Inspired Awards involved mapping, rehabbing, retrofitting, replacing and managing existing infrastructure. This is my classification of these Be Inspired finalists;
Be Inspired Finalists
1 Full lifecycle workflow
2 Replacement
7 Renovation, rehab, retrofit
3 Mapping existing infrastructure
1 Historic site protection
5 Utility asset management
Full life cycle management
Patrick MacLeamy, Chairman of buildingSMART and CEO of HOK, has been pushing a very simple message about the U.S. construction industry for years. Buildings are too expensive, are too inefficient to operate and maintain, and don't last long. As a result the U.S. construction industry is falling behind the Nordic countries, the U.K. and Singapore. His solution is a full life cycle approach to construction. Information has to be shared between owners, designers, contractors, operations and facilities management over the entire life cycle of the building or infrastructure.
Buildings
Over 50% of the cost of maintaining a building is operations and maintenance which is comprised of administration, maintenance and repairs, and restoration projects. In several countries BIM has become essential for design and construction. But many including the UK government believe that the full value of BIM can only be found during the operational life of the building where the majority of the life cycle costs occur. The UK government has said that "the 20% saving refers to CapEx cost savings however we know that the largest prize for BIM lies in the operational stages of the project life-cycle".
Road and highway infrastructure
Highway construction is being transformed, due in part to the arrival of autonomous vehicles. I've blogged about the startling (at least to traditional construction contractors) vision of the future of highway construction of the Chief of Surveys at the Oregon Department of Transportation (DoT) which targets the full lifecycle of highway assets from planning through design and construction and operation and maintainenance. Some large construction projects are already being designed, built and operated and maintained with a full lifecycle perspective.
Utility infrastructure
Industry surveys report that up to 80 percent of a utility's resources and budget can be spent on operating and maintaining existing utility infrastructure. Surveys also show that aging utility infrastructure is a top priority for most utilities.
Be Inspired Awards: Mapping, Monitoring, Rehabbing, and Replacing Infrastructure
One of the projects focused specifically on full lifecycle data management for highway construction.
The project, which was submitted by the Roads Directorate, Denmark, is for the $ 580 million 39-kilometer Herning – Holstebro highway which includes eight interchanges, four railway crossings, and five bridges. The important achievement of the project was to create a digital workflow with meaningful requirements for sharing data among disciplines and across the entire project lifecycle. The project was a finalist for the year's Be Inspired Award for Innovation in Roads.
Seven of the finalists' submissions involved renovation, rehabbing, and retrofit.
An outstanding example of a rehab project is the Bond Street to Baker Street Tunnel Remediation Project. This is a London Underground project in the UK. It involved the replacement of the existing elastoplastic concrete lining of a 215-meter tunnel segment on the Jubilee Line with a spheroidal graphite iron lining - all while the line was running at full capacity. This achievement won this year's Be Inspired Award for Innovation in Rail and Transit at the Year in Infrastructure 2015 conference.
Two of the finalists' projects involved replacement. An example of a replacement project was the Decommissioning and Replacement of Del Rio Bridge on US 20 this was carried out by Harper-Leavitt Engineering for the Idaho Transportation Department with minimum disruption to traffic.
Five of the finalists submitted projects that involved monitoring and extracting more value from existing transportation and utility infrastructure including rail, electric substations, electric and water and waste water distribution networks.
An example is a project submitted by SA Water which won the Be Inspired Innovation in Asset Performance Management Award.
The project involved integrating a hydraulic model and an operational analytics tool with network sensors to help them optimize their network. These tools enable them to optimize chlorine dosing for different water sources (runoff, desalinization, rivers), minimize electric power costs, and improve water quality by mapping water age across their entire network. SA Water have not only been able to reduce their power bill by A$3 million, but also have cut their network operating costs by nearly a A$ million. It has also resulted in improved water quality. More fundamentally it has given them much greater insight into sources of revenue and the costs of various aspects of operating a water network.
Four of the finalist projects involved mapping and historic site protection. An example is a gas main project submitted by Utility Mapping Services Inc. This project involved creating a 3D map of underground utilities along a stretch of highway with complex utility infrastructure woven through dense commercial and residential areas with limited right-of-way and heavy traffic congestion. Most critically from a safety perspective, there were no utility strikes on the project. As a result the 3D model is credited with reducing construction time from 10 to 7 weeks. Most importantly from a budget perspective, there were no change orders and the total cost of the project came in at 10-15% less than estimated in the absence of a 3D model.
Another example is a project submitted by the Singapore Land Authority (SLA).
Singapore intends to be the world's first "smart nation". Part of this initiative involves developing a virtual Singapore that is intended to be the source of authoritative information about Singapore for use by government agencies. The project involves capturing large amounts of data using multiple rapid mapping technologies including oblique imagery, airborne laser scanning, mobile laser scanning, and terrestrial scanning. The data has been compiled into 3D city model in a single database repository which includes geometry, topology, semantics and appearance. The database relies on CityGML, a standard managed by the Open Geospatial Consortium (OGC), for the database schema and for data exchange. The total volume of data is more than 50 terabytes. The database is open and accessible to all government agencies. The most challenging part of the project has been the development of business processes and technologies for ensuring the data remains current. At the the Year in Infrastructure conference in London the SLA the won the annual Be Inspired Award for Innovation in Government.